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Abstract. In this paper, we classify the positive solutions to the following

Lane-Emden type integral system with negative exponents
u(x) =

∫
Rn
|x− y|τu−p(y)v−q(y) dy, x ∈ Rn,

v(x) =

∫
Rn
|x− y|τu−r(y)v−s(y) dy, x ∈ Rn,

where n ≥ 1 is an integer and τ, p, q, r, s > 0. Particularly, using an integral
form of the method of moving spheres, we classify the positive solutions to the
integral system whenever

p+ q = r + s = 1 + 2n/τ.

We also establish the non-existence of positive solutions under the condition

max{p+ q, r + s} ≤ 1 + 2n/τ and p+ q + r + s < 2(1 + 2n/τ).
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1. Introduction. In this article, we examine the regularity, classification and non-
existence of positive solutions to the following system of integral equations having
coupled nonlinearities with negative exponents:

u(x) =

∫
Rn
|x− y|τu−p(y)v−q(y) dy, x ∈ Rn,

v(x) =

∫
Rn
|x− y|τu−r(y)v−s(y) dy, x ∈ Rn,

(1)

where n ≥ 1 is an integer and τ, p, q, r, s > 0. Our motivation for studying this
integral system stems from the fact that it arises naturally in the study of reversed
variants of the Hardy-Littlewood-Sobolev (HLS) inequalities and in curvature prob-
lems from conformal geometry. For instance, a special case of system (1) is the
integral system 

u(x) =

∫
Rn
|x− y|τv−p(y) dy, x ∈ Rn,

v(x) =

∫
Rn
|x− y|τu−q(y) dy, x ∈ Rn,

(2)

which is closely related to the Euler-Lagrange equation for the extremals to a re-
versed HLS inequality introduced by the first author and Zhu [8] (see also [22]). In
particular, for τ = α− n > 0 and p = q = −(n+ α)/(n− α), the authors employed
the method of moving spheres to show that every positive measurable solution of
system (2) has the formu(x) = a1

(
|x− x0|2 + d

)α−n
2 , x ∈ Rn,

v(x) = a2

(
|x− x0|2 + d

)α−n
2 , x ∈ Rn,

(3)

where x0 ∈ Rn is some point and a1, a2, d > 0 are constants. This classification
result is a crucial step in finding the best constant in the reversed HLS inequality.
For more on HLS inequalities and its reversed versions on, say, compact Riemannian
manifolds and their applications to curvature problems, we refer the reader to [7, 10]
and the references therein. Soon after, the author in [12] considered system (2)
and obtained necessary conditions for the existence of positive solutions as well
as necessary and sufficient conditions for the scale invariance of the system with
respect to certain energy functionals.

When u ≡ v and p = q, system (2) becomes the single integral equation

u(x) =

∫
Rn
|x− y|τu−p(y) dy, x ∈ Rn, (4)

which was introduced by Li in [18]. Interestingly, when n = 3, τ = 1 and p = 7,
this equation is closely related to a fourth order conformal covariant operator on
compact 3-manifolds. Xu [24] later proved that equation (4) has a positive solution
of class C1 if and only if p = 1+2n/τ . Therefore the earlier result of Li [18] indicates
that p = 1 + 2n/τ and the positive solution u has the form

u(x) = a(|x− x0|2 + d)τ/2, x ∈ Rn, (5)

where x0 ∈ Rn is some point and a, d > 0 are constants. Although there are some
similarities with the classical HLS integral equations, the results for equation (4)
are somewhat surprising. More precisely, if α ∈ (0, n) and p > 0, Chen, Li and Ou
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in [2] and [4] proved the following for the classical HLS integral equation

u(x) =

∫
Rn
|x− y|α−nup(y) dy, x ∈ Rn. (6)

(a) Every positive regular solution of (6) in the critical case

p = (n+ α)/(n− α)

has the form (5) but with τ = −(n− α) < 0.
(b) The only non-negative regular solution of (6) is u ≡ 0 whenever the subcritical

condition holds, i.e.,

p < (n+ α)/(n− α).

Unlike with equation (4), however, there does exist positive solutions in the super-
critical case p > (n+α)/(n−α), at least when α is an even integer (see [14, 15, 20]).
Furthermore, analogous results—albeit mostly partial ones—are known for the HLS
system, i.e., when p, q < 0 and τ = α− n < 0 in (2). Namely, the questions on the
classification, existence and non-existence of positive solutions remain open for the
most part. We refer the reader to the papers [1, 3, 5, 11, 13, 19] and the references
therein for more details.

If p > 1 and α ∈ (0, n), it is noteworthy to mention the equivalence between
equation (6) and the partial differential equation

(−∆)α/2u(x) = up(x), u > 0, x ∈ Rn.

Here we mean the two equations are equivalent if, assuming solutions belong to
the appropriate function space, a positive solution of one equation multiplied by
a suitable positive constant if necessary, is also a positive solution of the other;
and vice versa (cf. [2, 23]). Therefore, the results for the integral equation also
hold for the equivalent differential equation, and this illustrates one advantage of
studying the integral equations. In view of this, one can obviously consider the
corresponding differential equations to system (1). Indeed, several papers have
addressed the regularity, existence and non-existence of positive solutions to such
differential systems with negative exponents on bounded smooth domains (see [9,
25]). We should also mention several past works that examine system (1) but with
τ = α − n < 0, p = s ≤ −1, q = r ≤ −1 and its corresponding differential system
(sometimes called the Schrödinger type elliptic system). For example, Li and Ma
[21] studied the symmetry and uniqueness of its positive ground state solutions.
Inspired by this, the first author of this paper examined the same integral system
and further obtained classification results when p + q = −(n + α)/(n − α) and
non-existence results when p+ q > −(n+ α)/(n− α) (see [6]). Using a topological
approach, Li and the third author [14] recently obtained existence results for a
family of elliptic systems which included the Schrödinger type system.

Motivated by the previous results for the above integral equations and systems,
our aim in this paper is to generate similar classification and non-existence results
for system (1). We achieve this by utilizing similar tools developed in the earlier
works described above. In particular, we exploit an integral version of the method
of moving spheres (see [16, 17, 18]). In the process, however, we must address
and overcome several issues contributed by the coupled components and negative
exponents in the problem.

We now state our main results, which are reminiscent of the ones for equation
(4). We begin with a theorem on the regularity of measurable solutions. In this
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paper, measurable solutions refer to solutions which are Lebesgue measurable and
non-infinity.

Theorem 1.1. Let n ≥ 1, τ, p, q, r, s > 0 and let (u, v) be a pair of positive mea-
surable solutions to system (1). Then u, v are smooth, i.e., u, v belong to C∞(Rn).

This theorem indicates that we can always assume hereafter that solutions of
system (1) are smooth. Then the following classification result holds for positive
solutions.

Theorem 1.2. Suppose n ≥ 1 and τ, p, q, r, s > 0 satisfy

p+ q = r + s = 1 + 2n/τ.

If (u, v) is a pair of positive smooth solutions to system (1), then u, v have the form{
u(x) = c1

(
|x− x0|2 + d

)τ/2
, x ∈ Rn,

v(x) = c2
(
|x− x0|2 + d

)τ/2
, x ∈ Rn,

(7)

where x0 ∈ Rn is some point and c1, c2, d > 0 are constants.

We now address the non-existence of solutions for the integral system. Although
the next lemma plays an important role in our proofs of Theorems 1.1 and 1.2, we
state it here because it also yields a non-existence result. Its proof is straightforward
and so we state and prove it right after. This is not so much the case for the lemma
itself, so we delay its proof until the next section.

Lemma 1.3. For n ≥ 1 and τ, p, q, r, s > 0, if (u, v) is a pair of positive measurable
solutions to (1), then

(i)

∫
Rn

(1 + |y|τ )u−p(y)v−q(y) dy <∞,∫
Rn

(1 + |y|τ )u−r(y)v−s(y) dy <∞;

(ii) a := lim
|x|→∞

|x|−τu(x) =

∫
Rn
u−p(y)v−q(y) dy <∞,

b := lim
|x|→∞

|x|τv(x) =

∫
Rn
u−r(y)v−s(y) dy <∞;

(iii) For some constants C1, C2 > 0,

1 + |x|τ

C1
≤ u(x) ≤ C1(1 + |x|τ ), ∀x ∈ Rn,

1 + |x|τ

C2
≤ v(x) ≤ C2(1 + |x|τ ), ∀x ∈ Rn.

As noted above, we can easily deduce a non-existence result from Lemma 1.3. To
see this, let (u, v) be a pair of positive measurable solutions to system (1). Without
loss of generality, we can assume that

p+ q = max{p+ q, r + s}.
Then p + q > 1 + n/τ is clearly a necessary condition for the existence of positive
solutions. On the contrary, i.e., if n+ τ − τ(p+ q) ≥ 0, Lemma 1.3 (iii) would then
imply that

u(x) ≥
∫
Rn\B1(0)

|x− y|τu−p(y)v−q(y) dy ≥ C
∫ ∞

1

rn+τ−τ(p+q) dr

r
=∞
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for a.e. x ∈ Rn. Essentially, we have proved that

Theorem 1.4. System (1) admits no positive smooth solution whenever

max{p+ q, r + s} ≤ 1 + n/τ.

Of course, one may ask if this non-existence result is optimal. It turns out that
this is not the case, and we adapt the method from our proof of Theorem 1.2 to get
an improved version.

Theorem 1.5. Let n ≥ 1 and τ, p, q, r, s > 0 satisfy

max{p+ q, r + s} ≤ 1 + 2n/τ and p+ q + r + s < 2
(
1 + 2n/τ

)
.

Then system (1) admits no positive smooth solution.

The remaining parts of this paper is arranged in the following manner. In Section
2, we provide the proof of Lemma 1.3 followed by the proof of Theorem 1.1. Section
3 contains the proof of Theorem 1.2 and Section 4 contains the proof of Theorem
1.5.

2. Regularity. In this section, we establish the regularity of positive solutions
to (1), but first we give the proof of Lemma 1.3. Throughout the paper, BR(x0)
denotes the set {x ∈ Rn : |x− x0| < R}, the open ball of radius R > 0 with center
x0 ∈ Rn. We sometimes use the short-hand notation BR = BR(0).

Proof of Lemma 1.3. The proof is similar to that of Lemma 5.1 in Li [18], but
we include it here for completeness. Since u and v are non-infinity measurable
functions, we have

meas{x ∈ Rn : u(x) <∞} > 0, and meas{x ∈ Rn : v(x) <∞} > 0.

Moreover, there exist R > 1 and some measurable set E such that

E ⊂ {x ∈ Rn : u(x), v(x) < R} ∩BR
with |E| > 1

R . For any x ∈ Rn, there holds

u(x) =

∫
Rn
|x− y|τu−p(y)v−q(y)dy

≥
∫
E

|x− y|τu−p(y)v−q(y)dy

≥ R−(p+q)

∫
E

|x− y|τdy.

Then

lim
|x|→∞

u(x)

(1 + |x|τ )
≥ lim

|x|→∞

R−(p+q)

(1 + |x|τ )

∫
E

|x− y|τdx = CR−(p+q)−1,

which implies

u(x) ≥ (1 + |x|τ )

C1
.

Similarly, for any x ∈ Rn, we have

v(x) ≥ (1 + |x|τ )

C2
.

This proves the left hand side of the inequalities in (iii).
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On the other hand, for some x0 ∈ Rn with 1 ≤ |x0| ≤ 2,∫
Rn
|x0 − y|τu−p(y)v−q(y)dy = u(x0) <∞,

∫
Rn
|x0 − y|τu−r(y)v−s(y)dy = v(x0) <∞.

Combining the left hand side inequalities in (iii) and the above, we get (i).
For |x| ≥ 1,

|x− y|τ

|x|τ
u−p(y)v−q(y) ≤ (1 + |y|τ )u−p(y)v−q(y),

and

|x− y|τ

|x|τ
u−r(y)v−s(y) ≤ (1 + |y|τ )u−r(y)v−s(y).

Taking these with (i) and using the Lebesgue dominated convergence theorem, we
get

a = lim
|x|→∞

|x|−τu(x) = lim
|x|→∞

∫
Rn

|x− y|τ

|x|τ
u−p(y)v−q(y) dy

=

∫
Rn
u−p(y)v−q(y) dy <∞,

and

b = lim
|x|→∞

|x|−τv(x) = lim
|x|→∞

∫
Rn

|x− y|τ

|x|τ
u−r(y)v−s(y) dy

=

∫
Rn
u−r(y)v−s(y) dy <∞.

We obtain (ii). Combining (i) and (ii) with (1), we get the right-hand side of the
inequality in (iii). �

Proof of Theorem 1.1. For an arbitrary choice of R > 0, we can split u into two
parts:

u(x) =

∫
|y|≤2R

|x− y|τu−p(y)v−q(y) dy +

∫
|y|>2R

|x− y|τu−p(y)v−q(y) dy

=: J1(x) + J2(x).

Applying Lemma 1.3 (i), J2(x) can be differentiated under the integral for |x| < R,
so J2 ∈ C∞(BR). On the other hand, by Lemma 1.3 (iii), we have u−pv−q ∈
L∞(B2R) and so J1 is at least Hölder continuous in BR. Since R > 0 is arbitrary, u
is at least Hölder continuous in Rn, and along a similar process, we can deduce that
v is at least Hölder continuous in Rn. So in view of Lemma 1.3 (iii), we have that
u−pv−q is Hölder continuous in B2R and the regularity of J1 is further improved. By
standard bootstrap arguments, we conclude that u ∈ C∞(Rn). Likewise, a similar
argument shows that v ∈ C∞(Rn). This completes the proof of the theorem.
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3. Classification of positive solutions in the critical case. In this section, we
complete the proof of Theorem 1.2. To this end, we employ the Kelvin transform
and the method of moving spheres of Li and Zhu [16], which was later improved by
Li [18] (see also Dou and Zhu [8]).

For x ∈ Rn and λ > 0, we define

ωx,λ(ξ) =
( λ

|ξ − x|
)−τ

ω(ξx,λ), ∀ξ ∈ Rn \{x},

where

ξx,λ = x+
λ2(ξ − x)

|ξ − x|2

is the Kelvin transform of ξ with respect to Bλ(x). Set Σx,λ = Rn\Bλ(x).

Lemma 3.1. Let τ > 0 and p, q, r, s > 0. If (u, v) is a pair of positive solutions to
system (1), then, for any x ∈ Rn,

ux,λ(ξ) =

∫
Rn
|ξ − η|τu−px,λ(η)v−qx,λ(η)

( λ

|η − x|
)θ1
dη, ∀ ξ ∈ Rn, (8)

vx,λ(ξ) =

∫
Rn
|ξ − η|τu−rx,λ(η)v−sx,λ(η)

( λ

|η − x|
)θ2
dη, ∀ ξ ∈ Rn, (9)

where
θ1 = 2n+ τ(1− p− q), θ2 = 2n+ τ(1− r − s).

Moreover,

ux,λ(ξ)− u(ξ) =
∫

Σx,λ

K(x, λ; ξ, η)
[
u−p(η)v−q(η)−

( λ

|η − x|
)θ1u−p

x,λ(η)v
−q
x,λ(η)

]
dη, (10)

vx,λ(ξ)− v(ξ) =
∫

Σx,λ

K(x, λ; ξ, η)
[
u−r(η)v−s(η)−

( λ

|η − x|
)θ2u−r

x,λ(η)v
−s
x,λ(η)

]
dη, (11)

where

K(x, λ; ξ, η) =
( λ

|ξ − x|
)−τ |ξx,λ − η|τ − |ξ − η|τ ,

and
K(x, λ; ξ, η) > 0, ∀ ξ, η ∈ Σx,λ, λ > 0.

Proof. The lemma can be verified via direct calculations, but we sketch the proof
for the reader’s convenience. Write

y = ηx,λ = x+
λ2(η − x)

|η − x|2

with x, η ∈ Rn and λ > 0. The n-space forms in the y and η variables are related
by

dy =
( λ

|η − x|
)2n

dη.

For simplicity, write

A+(ξx,λ) =

∫
Σx,λ

|ξx,λ − y|τu−p(y)v−q(y) dy,

A−(ξx,λ) =

∫
Bλ(x)

|ξx,λ − y|τu−p(y)v−q(y) dy.

From (1), u can then be rewritten as

u(ξx,λ) = A+(ξx,λ) +A−(ξx,λ)
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for x, ξ ∈ Rn. By the change of variables we have

A+(ξx,λ) =

∫
Σx,λ

|ξx,λ − y|τu−p(y)v−q(y) dy

=

∫
Bλ(x)

|ξx,λ − ηx,λ|τu−p(ηx,λ)v−q(ηx,λ)
( λ

|η − x|
)2n

dη

=

∫
Bλ(x)

|ξx,λ − ηx,λ|τu−px,λ(η)v−qx,λ(η)
( λ

|η − x|
)2n−τ(p+q)

dη.

Using the fact that

|η − x|
λ

|ξ − x|
λ
|ξx,λ − ηx,λ| = |ξ − η|,

we arrive at

A+
x,λ(ξ) :=

( λ

|ξ − x|
)−τ

A+(ξx,λ)

=
( λ

|ξ − x|
)−τ ∫

Bλ(x)

|ξx,λ − ηx,λ|τu−px,λ(η)v−qx,λ(η)
( λ

|η − x|
)2n−τ(p+q)

dη

=

∫
Bλ(x)

|ξ − η|τu−px,λ(η)v−qx,λ(η)
( λ

|η − x|
)θ1
dη.

Similarly, we have

A−x,λ(ξ) :=
( λ

|ξ − x|
)−τ

A−(ξx,λ) =

∫
Σx,λ

|ξ − η|τu−px,λ(η)v−qx,λ(η)
( λ

|η − x|
)θ1
dη.

Hence,

ux,λ(ξ) = A+
x,λ(ξ) +A−x,λ(ξ) =

∫
Rn
|ξ − η|τu−px,λ(η)v−qx,λ(η)

( λ

|η − x|
)θ1
dη.

Identity (8) is established. Furthermore,

ux,λ(ξ)− u(ξ) = A+
x,λ(ξ) +A−x,λ(ξ)−

(
A+(ξ) +A−(ξ)

)
= (A−x,λ(ξ)−A+(ξ)) + (A+

x,λ(ξ)−A−(ξ))

=

∫
Σx,λ

|ξ − η|τ
[( λ

|η − x|
)θ1
u−px,λ(η)v−qx,λ(η)− u−p(η)v−q(η)

]
dη

+(A+
x,λ(ξ)−A−(ξ)).

Noting that

A+
x,λ(ξ) =

( λ

|ξ − x|
)−τ

A+(ξx,λ)

=
( λ

|ξ − x|
)−τ ∫

Σx,λ

|ξx,λ − y|τu−p(y)v−q(y) dy,

and using the fact (ξx,λ)x,λ = ξ, we have

A−(ξ) = A−((ξx,λ)x,λ) =
( λ

|ξx,λ − x|
)τ
A−x,λ(ξx,λ)

=
( λ

|ξx,λ − x|
)τ ∫

Σx,λ

|ξx,λ − η|τu−px,λ(η)v−qx,λ(η)
( λ

|η − x|
)θ1
dη

=
( λ

|ξ − x|
)−τ ∫

Σx,λ

|ξx,λ − η|τu−px,λ(η)v−qx,λ(η)
( λ

|η − x|
)θ1
dη.
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Identity (10) is established. Along the same line, we can deduce (9) and (11).
Finally, we discuss the sign of K(x, λ; ξ, η). For ξ, η ∈ Σx,λ and λ > 0, it is easy

to verify that

|ξ − η|2 −
( |ξ − x|

λ

)2|ξx,λ − η|2 =
(
|ξ − x|2 + 2〈ξ − x, x− η〉+ |x− η|2

)
−
( |ξ − x|

λ

)2(|x− η|2 +
2λ2〈x− η, ξ − x〉

|ξ − x|2
+

λ4

|ξ − x|2
)

= |ξ − x|2 + |x− η|2 − |ξ − x|
2|x− η|2

λ2
− λ2

=
( |ξ − x|2

λ2
− 1
)(
λ2 − |x− η|2

)
< 0.

Since h(x) = xτ/2 is montonically increasing on (0,∞), we have( |ξ − x|
λ

)τ |ξx,λ − η|τ − |ξ − η|τ =
[( |ξ − x|

λ
|ξx,λ − η|

)2] τ2 − (|ξ − η|2) τ2 > 0.

Hence, we conclude that K(x, λ; ξ, η) > 0 for ξ, η ∈ Σx,λ and λ > 0. This completes
the proof of Lemma 3.1.

In Lemma 3.1, we note that θ1 = θ2 = 0 if and only if p+q = r+s = 1+2n/τ. So
from now on in this section, we assume that p+q = r+s = 1+2n/τ . Next, we prove
Theorem 1.2 by the method of moving spheres, but we require some preliminary
lemmas. The first lemma guarantees we can initiate the method of moving spheres.

Lemma 3.2. Assume the same conditions as those in Theorem 1.2. Then there
exists λ0(x) > 0 for each x ∈ Rn such that

ux,λ(ξ) ≥ u(ξ), and vx,λ(ξ) ≥ v(ξ), ∀ ξ ∈ Σx,λ,∀ 0 < λ < λ0(x).

Proof. Without loss of generality, we may assume x = 0 and write uλ = u0,λ. Since
τ > 0 and u ∈ C1(Rn) is a positive function, there exists r0 ∈ (0, 1) such that

∇ξ
(
|ξ|− τ2 u(ξ)

)
· ξ < 0, ∀ 0 < |ξ| < r0.

Thus,

uλ(ξ) > u(ξ), ∀ 0 < λ < |ξ| < r0. (12)

From Lemma 1.3 (iii), we get

u(ξ) ≤ C(r0)|ξ|τ , ∀ |ξ| ≥ r0.

For small λ0 ∈ (0, r0) and any 0 < λ < λ0, using (iii) of Lemma 1.3 and (12)

uλ(ξ) =
( λ
|ξ|
)−τ

u(
λ2ξ

|ξ|2
) ≥

( |ξ|
λ0

)τ
inf
Br0

u ≥ u(ξ), |ξ| ≥ r0.

Combining the above with (12), we arrive at

ux,λ(ξ) ≥ u(ξ), ∀ξ ∈ Σx,λ, 0 < λ < λ0(x)

with x = 0 and λ0(x) = λ0. Likewise, we can use similar arguments to arrive at

vx,λ(ξ) ≥ v(ξ), ∀ξ ∈ Σx,λ, 0 < λ < λ0(x) with x = 0.

This completes the proof of the lemma.
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For a given x ∈ Rn, define

λ̄(x) = sup{µ > 0 |ux,λ(ξ) ≥ u(ξ) and vx,λ(ξ) ≥ v(ξ), ∀λ ∈ (0, µ),∀ ξ ∈ Σx,λ}.

The next lemma shows that solutions must have the conformal invariance property
provided that the sphere stops.

Lemma 3.3. For some x0 ∈ Rn, if λ̄(x0) <∞, then

ux0,λ̄(x0)(ξ) = u(ξ), and vx0,λ̄(x0)(ξ) = v(ξ), ∀ξ ∈ Rn.

Proof. Without loss of generality, we may assume that x0 = 0 and we write λ̄ =
λ̄(0), uλ = u0,λ, vλ = v0,λ, ξ

λ = ξ0,λ and Σλ = Σ0,λ. By the definition of λ̄,

uλ̄(ξ) ≥ u(ξ), vλ̄(ξ) ≥ v(ξ), ∀ |ξ| ≥ λ̄.

Since θ1 = θ2 = 0, we use (10) and (11) with x = 0, λ = λ̄ and the positivity of the
kernel to arrive at the following two cases:
(a) uλ̄(ξ) = u(ξ) and vλ̄(ξ) = v(ξ) for all |ξ| ≥ λ̄, or
(b) uλ̄(ξ) > u(ξ) and vλ̄(ξ) > v(ξ) for all |ξ| > λ̄.

We claim that case (b) cannot happen. More precisely, if uλ̄(ξ) > u(ξ) and
vλ̄(ξ) > v(ξ) for all |ξ| > λ̄, then we will show that there is a suitably small ε∗ > 0
such that, for any λ ∈ (λ̄, λ̄ + ε∗), uλ(ξ) ≥ u(ξ) and vλ(ξ) ≥ v(ξ) for any |ξ| > λ.
This contradicts with the definition of λ̄ and would complete the proof of the lemma.
So now we prove the claim in two steps.

Step 1. We claim that there exists an ε1 ∈ (0, 1), such that for any ε < ε1,
λ̄ ≤ λ ≤ λ̄+ ε, if |ξ| ≥ λ̄+ 1, then

uλ(ξ)− u(ξ) ≥ ε1

2
|ξ|τ and vλ(ξ)− v(ξ) ≥ ε1

2
|ξ|τ .

From Lemma 3.1, we know that K(0, λ, ξ, η) > 0 for ∀ ξ, η ∈ Σλ. So using (10) and
Fatou’s lemma, we know that for all |ξ| ≥ λ̄,

lim inf
|ξ|→∞

|ξ|−τ (uλ̄(ξ)− u(ξ))

≥
∫

Σλ̄

lim inf
|ξ|→∞

|ξ|−τK(0, λ̄, ξ, η)
[
u−p(η)v−q(η)− u−p

λ̄
(η)v−q

λ̄
(η)
]
dη

=

∫
Σλ̄

(( λ̄
|η|
)−τ − 1

)[
u−p(η)v−q(η)− u−p

λ̄
(η)v−q

λ̄
(η)
]
dη.

Due to the positivity of u−p(η)v−q(η) − u−p
λ̄

(η)v−q
λ̄

(η), we get that there exists

ε2 ∈ (0, 1) such that

uλ̄(ξ)− u(ξ) ≥ ε2|ξ|τ , ∀ |ξ| ≥ λ̄+ 1.

By the continuity of u, there exists an ε3 ∈ (0, ε2) such that for |ξ| ≥ λ̄ + 1 and
λ̄ ≤ λ ≤ λ̄+ ε3,

|uλ(ξ)− uλ̄(ξ)| = |
( λ
|ξ|
)−τ

u(
λ2ξ

|ξ|2
)−

( λ̄
|ξ|
)−τ

u(
λ̄2ξ

|ξ|2
)|

≤ ε3

2
|ξ|τ .

Thus, for all |ξ| ≥ λ̄+ 1, λ̄ ≤ λ ≤ λ̄+ ε2,

uλ(ξ)− u(ξ) = uλ̄(ξ)− u(ξ) + uλ(ξ)− uλ̄(ξ) ≥ ε2

2
|ξ|τ .
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Similarly, there exists ε4 ∈ (0, ε3) such that

vλ(ξ)− v(ξ) ≥ ε4

2
|ξ|τ ,

for all |ξ| ≥ λ̄+ 1, λ̄ ≤ λ ≤ λ̄+ ε4. Choosing ε1 = ε4, we complete the proof of the
claim.

Step 2. There is an ε∗ < ε1, such that for any ε < ε∗, λ̄ ≤ λ ≤ λ̄ + ε, if ξ ∈ Rn
satisfies λ ≤ |ξ| ≤ λ̄+ 1, then uλ(ξ)− u(ξ) ≥ 0 and vλ(ξ)− v(ξ) ≥ 0.

Let ε∗ ∈ (0, ε1). For λ̄ ≤ λ ≤ λ̄+ ε∗ and λ ≤ |ξ| ≤ λ̄+ 1, we have,

uλ(ξ)− u(ξ) =

∫
Σλ

K(0, λ; ξ, η)
(
u−p(η)v−q(η)− u−pλ (η)v−qλ (η)

)
dη

≥
∫

Σλ\Σλ̄+1

K(0, λ; ξ, η)
(
u−p(η)v−q(η)− u−pλ (η)v−qλ (η)

)
dη

+

∫
Σλ̄+2\Σλ̄+3

K(0, λ; ξ, η)
(
u−p(η)v−q(η)− u−pλ (η)v−qλ (η)

)
dη

≥
∫

Σλ\Σλ̄+1

K(0, λ; ξ, η)
(
u−p
λ̄

(η)v−q
λ̄

(η)− u−pλ (η)v−qλ (η)
)
dη

+

∫
Σλ̄+2\Σλ̄+3

K(0, λ; ξ, η)
(
u−p(η)v−q(η)− u−pλ (η)v−qλ (η)

)
dη.

(13)

By Step 1, there exists δ1 > 0 such that

u−p(η)v−q(η)− u−pλ (η)v−qλ (η) ≥ δ1, ∀η ∈ Σλ̄+2\Σλ̄+3.

Since

K(0, λ; ξ, η) = 0, ∀ |ξ| = λ,

∇ξK(0, λ; ξ, η) · ξ||ξ|=λ = τ |ξ − η|τ−2
(
|η|2 − |ξ|2

)
> 0, ∀ η ∈ Σλ̄+2\Σλ̄+3,

and the function is smooth in the relevant region, then, based on the positivity of
kernel, we have

K(0, λ; ξ, η) ≥ δ2(|ξ| − λ), ∀λ ≤ |ξ| ≤ λ̄+ 1,∀η ∈ Σλ̄+2\Σλ̄+3,

where δ2 > 0 is some constant independent of ε∗. It is easy to see that for some
constant C > 0 (independent of ε∗), and λ̄ ≤ λ ≤ λ̄+ ε∗,

|u−p
λ̄

(η)v−q
λ̄

(η)− u−pλ (η)v−qλ (η)| ≤ Cε∗, λ ≤ |η| ≤ λ̄+ 1.

Using the mean value theorem, we have, for λ ≤ |ξ| ≤ λ̄+ 1, that∫
Σλ\Σλ̄+1

K(0, λ; ξ, η) dη =

∫
Σλ\Σλ̄+1

(( |ξ|
λ

)τ |ξλ − η|τ − |ξ − η|τ)dη
=

∫
Σλ\Σλ̄+1

[
(
( |ξ|
λ

)τ − 1)|ξλ − η|τ +
(
|ξλ − η|τ − |ξ − η|τ

)]
dη

≤ C(|ξ| − λ) +

∫
Σλ\Σλ̄+1

(
|ξλ − η|τ − |ξ − η|τ

)
dη

≤ C(|ξ| − λ) + C|ξλ − ξ| ≤ C(|ξ| − λ).
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Thus, for ε ∈ (0, ε∗), λ̄ ≤ λ ≤ λ̄+ ε, λ ≤ |ξ| ≤ λ̄+ 1, from (13) it follows

uλ(ξ)− u(ξ) ≥ −Cε
∫

Σλ\Σλ̄+1

K(0, λ; ξ, η)dη + δ1δ2(|ξ| − λ)

∫
Σλ̄+2\Σλ̄+3

dη

≥
(
δ1δ2

∫
Σλ̄+2\Σλ̄+3

dη − Cε
)
(|ξ| − λ) ≥ 0.

Along the same way, we can show

vλ(ξ)− v(ξ) ≥ 0 for λ̄ ≤ λ ≤ λ̄+ ε, λ ≤ |ξ| ≤ λ̄+ 1.

Step 2 is established, and this completes the proof of Lemma 3.3.

The following two key calculus lemmas are needed to carry out the final steps of
the proof of Theorem 1.2.

Lemma 3.4. (Lemma 5.7 in [18]) For n ≥ 1, µ ∈ R, let f be a function defined on
Rn and valued in [−∞,+∞] such that( λ

|y − x|
)µ
f
(
x+

λ2(y − x)

|y − x|2
)
≥ f(y), ∀ |y − x| > λ > 0, x, y ∈ Rn.

Then f ≡ constant or ±∞.

Lemma 3.5. (Lemma 5.8 in [18]) For n ≥ 1, µ ∈ R, let f ∈ C0(Rn), and µ ∈ R.
Suppose that for every x ∈ Rn, there exists λ = λ(x) ∈ R such that( λ

|y − x|
)µ
f
(
x+

λ2(y − x)

|y − x|2
)

= f(y), ∀y ∈ Rn \ {x}.

Then there are a ≥ 0, d > 0 and x̄ ∈ Rn, such that

f(x) ≡ ±a
( 1

d+ |x− x̄|2
)µ/2

.

Proof of Theorem 1.2. First, we show that there exists some x0 ∈ Rn such that
λ̄(x0) <∞. Then we show that this implies λ̄(x) is finite for all x ∈ Rn. We prove
the former statement by contradiction. That is, assume otherwise, i.e., if λ̄(x) =∞
for all x ∈ Rn, then for ξ ∈ Rn,

ux,λ(ξ) ≥ u(ξ), and vx,λ(ξ) ≥ v(ξ), ∀ |ξ − x| > λ.

By Lemma 3.4, we conclude that u = v = constant, which cannot satisfy (1).
Now, for a fixed x ∈ Rn, it follows from the definition of λ̄(x) that,

ux,λ(ξ) ≥ u(ξ), ∀ 0 < λ < λ̄(x), ∀ |ξ − x| ≥ λ.
From Lemma 1.3 (ii), we have, for any λ ∈ (0, λ̄(x)), that

0 < a = lim
|ξ|→∞

|ξ|−τu(ξ) ≤ lim
|ξ|→∞

|ξ|−τux,λ(ξ) = λ−τu(x).

This shows λ̄(x) <∞ for all x ∈ Rn. From Lemma 3.3, we have

ux,λ̄(ξ) = u(ξ), and vx,λ̄(ξ) = v(ξ), ∀x, ξ ∈ Rn.
Invoking Lemma 3.5, we get

u(ξ) = c1
(
|ξ − ξ0|2 + d

)τ/2
and

v(ξ) = c2
(
|ξ − ξ0|2 + d

)τ/2
for some c1, c2 > 0, d > 0 and ξ0 ∈ Rn.
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4. Non-existence of positive solutions in the subcritical case. In this sec-
tion, we give the proof of Theorem 1.5. To this end, we need the following lemmas.

Lemma 4.1. Assume the same conditions as those in Theorem 1.5. For each
x ∈ Rn there exists λ0(x) > 0 such that

ux,λ(ξ) ≥ u(ξ) and vx,λ(ξ) ≥ v(ξ), ∀ ξ ∈ Σx,λ,∀ 0 < λ < λ0(x).

The proof is the same as that of Lemma 3.2, so we omit the details.

Lemma 4.2. λ̄(x) =∞ for all x ∈ Rn.

Proof. We prove it by contradiction. Assume the contrary, that is, there exists some
x0 ∈ Rn such that λ̄(x0) <∞. By the definition of λ̄,

ux0,λ̄(ξ) ≥ u(ξ),

vx0,λ̄(ξ) ≥ v(ξ),

for ξ ∈ Σx0,λ̄. From (10) and (11) with x = x0, λ = λ̄ and the fact that at least one
of the parameters θ1 and θ2 is positive, we have

ux0,λ̄(ξ) > u(ξ),

vx0,λ̄(ξ) > v(ξ),

for ξ ∈ Σx0,λ̄. Similar to the arguments in the proof of Lemma 3.3, we can conclude

that there is a suitably small ε > 0 such that for λ ∈ [λ̄, λ̄+ ε)

ux0,λ(ξ) ≥ u(ξ),

vx0,λ(ξ) ≥ v(ξ),

for ξ ∈ Σx0,λ, λ ∈ [λ̄, λ̄ + ε). This contradicts with the definition of λ̄, and this
completes the proof.

Proof of Theorem 1.5. According to Lemma 4.2, λ̄(x) = ∞ for all x ∈ Rn, that is,
for all λ > 0 and x ∈ Rn,

ux,λ(ξ) ≥ u(ξ) for ξ ∈ Σx,λ,

vx,λ(ξ) ≥ v(ξ) for ξ ∈ Σx,λ.

By Lemma 3.4 we conclude that u = v = constant, but this cannot satisfy system
(1). Thus, we arrive at a contradiction, and this completes the proof. �
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